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NASA TTF-9548
LAMINAR HEAT EXCHANGE IN THE INLET SECTION OF A

RECTANGULAR CHANNEL

I. N. Sadikov

ABSTRACT Eﬁl/ijéi
Investigation of heat transfer in the inlet
section of a rectangular channel with a laminar
flow of incompressible fluid passing through the
channel and a uniform or nonuniform temperature
field arising at the inlet. Formulas are pre-

sented for the distribution of temperatures and

Nusselt numbers along a side of a channel cross

'l:ﬂJ
section. /%Lf

It was shown in (Ref. 1) that, for the case of laminar flow, it  /423%
is not permissible to transform the law of resistance, derived for
a circular tube, to other transverse cross-sections by replacing the
normal radius by the hydraulic radius. Thus, for example, the resis-
tance coefficient for a circular tube is expressed by the formula
Y. 16 Re,

while for a rectangular tube, it is expressed by

¥ - CRe,

* Note: Numbers in the margin indicate pagination in the original
foreign text.




where C = 14.225 for a tube having a square cross-section, and C = 24
for a flat slit. This is also confirmed by data presented in the
work (Ref. 2), which discusses the effect of the ratio between the side
lengths of a rectangle upon the friction coefficient for the case of
laminar flow. It is thus clear that for the case of laminar flow
there is no basis for transforming data on the Nu number for circular
tubes to rectangular tubes, by analogy with the transfer of heat and
momentum.

It should be noted that laminar flow is observed in the inlet
section of a tube for Re numbers which are larger than the critical
number. Thus, for example, in (Ref. 2) and (Ref. 3), it was shown

that for Re > Re., there is a region of laminar flow to which the dip

T
in the pressure curve corresponds in the inlet section of a rectangular
channel. The presence of a laminar heat exchange region in the inlet
section of a tube has been noted experimentally in several works, for
example, in (Ref. 4, 5, 6), and the laminar flow existed up to Re = 10°
numbers. Therefore, a theoretical study of laminar heat exchange in

the inlet section of a rectangular channel is of great practical

importance.

Since the temperature field at the entrance to a particular channel

is frequently nonuniform in regenerators and compact heat exchangers,
it is of comnsiderable interest to examine the effect of temperature

field nonuniformity at the entrance upon the heat exchange conditions
in the inlet section of a channel and on the temperature distribution

along its perimeter.




The energy equation of the boundary layer, for the stable flow
of an incompressible liquid with constant physical properties, and

in the absence of energy dissipation has the form (Ref. 7):

( ar ar _ﬂar)rl;_(zrr qj_r:)' (1)
o o

Let us compare the convective terms xugl, uiz u:gz. in this

ax ' dy' oz
equation. Since, in the inlet section of a rectangular channel, the
flow around each of its walls is similar to the flow over an infinite
flat plate, in order to compare the convective terms included in the
energy equation we can utilize the Blasius solution for the velocity
distribution in the case of flow over a flat plate. This is also
valid for the temperature field in the case of Pr = 1. It was shown

T , in the
Ix [pre

in the study (Ref. 8) that the relationship v_;’f. / p
Y

section of the boundary layer where the longitudinal velocity component
changes from u = 0 to u = 0.95, is close to a constant quantity,
equaling 0.5. Only at a considerable distance from the wall, almost
outside of the boundary layer limits, this relationship begins to
change considerably.

On the basis of the statements given above, one can write

ar ar Jar ar
v— 4 — =const, w — —_—
dy ox ¥ 0 / “ x - comst

and the energy equation for three-dimensional flow in the boundary

layer assumes the form

AR ) @
o of © oF
where ,'.=1+L._‘Z7.~/u£+wi7j w97
dy dx oz dax

/424




At the channel entrance, the magnitude of the velocity is con-
stant over the cross-section and equals U. As was shown in the work
(Ref. 9), if the longitudinal velocity component u is replaced by U,
which is the average value over the cross-section, small changes are
introduced in the solution of the equation, which can be taken into
account in the correction e, which is made in the equation. We then

obtain

tl— --a .
Ox X7

ar ( T T ) (3)

The magnitude of the correction e was calculated in the work

(Ref. 18):

-

e =0348p:

The equation which is obtained (3) is an equation of non-stationary
thermal conductivity, and the methods to be employed in solving it are
widely known (Ref. 10, 11).

Introducing the dimensionless variables ¢ = x/h, n = y/h, ¢ = z/h -
where h is half of the distance between the walls of a rectangular
channel which are perpendicular to the y-axis - and introducing the
dimensionless temperature 6 = (T— Tg)/Tg (T; is the characteristic

temperature of the liquid at the entrance cross-section), we obtain

— o &6  Fo 4 425
EP(‘E“GZ‘—.'F‘F. (4) 1425

In the case of a given heat current through the walls of a rectangu-
lar channel, the boundary conditions are described in the following

way:




=zl — = Kyt Kyt (5)

where g = zg/h is the distance from the x-axis to the walls in the
direction of the z-axis.

The solution of equation (4) for the inlet and boundary condi-
tions (5) can be represented as the sum of the solutions for the two
following equations which give the temperature distribution in an

infinite flat channel:

20,0, 28,7+ v,
2 g ¢ (%} gy y T
tpe% = a) ”.v a8 (6)
e RS
s, oo, PO G=EiENS
tPe £ = ’:, 96 (7)
at o7 Tt T, _E-L-_—_-_LKM-LK“‘

It can be readily seen that the soclution of equation (4), which
satisfies the boundary conditions (5), is the sum of the solutions
for equations (6) and (7):

b=h, +0.

Solutions of equation (6) were obtained in the work (Ref. 12).
If we apply these to the inlet section of the channel (¢ > 100) for
the number Re » 3:103, we obtain

I 1 — ePe
B'—‘—'Q(Kgy-v-?\‘v—ﬁy) l/E_Pe— lCr[C (—2—‘ -‘/—T) +

/T
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If we know the temperature distribution within the channel, we
can find the mean temperature of the liquid and the wall temperature.

We can use these to calculate the Nu number. We finally obtain

Nu !: T Al"'Bl- A Ko, + Kl: :,

l'—"" S
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For a uniform temperature field at the entrance and a constant
heat current along the perimeter and the length of the channel
(KOy = Koz = Kp, K3y = K3, = 0), we obtain

1

Nuj 1= —,
D

o v |/ e wny/ e ()

The formula for the number Nu|c=g0 is obtained by replacing the

quantity zo-z by 1-n.
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Figure 1

Temperature Distribution Along the Perimeter of a Rectangular

Channel zy/h=5 (a-along the wide side; 6-along the narrow side)

For Uniform Temperature Field at the Entrance and for a Given
Heat Current Re=10“, Pr=0.7: 1.4-¢=20; 2.5-50; 3.6-100.

Figure 1 presents the temperature distribution along the perimeter
of a rectangular channel in different cross-sections, in the case of a
uniform temperature field at the entrance. The cross-section of the
channel is a rectangle with a side ratio of 1:5.

1t can be seen from the graph that the temperature increases at the
corners of the channel, while the width of the increased temperature
region is the same in absolute magnitude, both for the short and for the
long sides of the rectangle. Therefore, the greater the ratio of the
rectangle sides (which represents the cross—section of the channel under
consideration), the more extensive is the zone of increased temperature /427
along the entire short side.

Figure 2 shows the distribution of the Nu number along the short




. :\ \
A\

P w w @

Figure 2

Nu Number Distribution Along the Perimeter (Along the Narrow
Side) of a Rectangular Channel zy/h=5 For a Uniform
Temperature Field at the Entrance and for a Given
Heat Current Re=10%, Pr=0.7: 1-£=10, 2-20, 3-30, 4-40, 5-50.

side of a rectangular channel at different distances from the entrance.
It can be seen from the figure that the Nu number decreases considerably
at the corners.

The presence of a nonuniform temperature field at the channel
entrance leads to a rather complex temperature distribution along the
perimeter of a rectangular channel, particularly of a square channel
(Figure 3). There is a much greater temperature increase at the corners
than there is in the middle of the channel.

If the temperature field at the channel entrance is such that the
temperature of layers closest to the wall is lower than the temperature
of the liquid in the middle of the channel, then close to the entrance the
mean mass temperature of the liquid is higher than the wall temperature.
As one moves away from the entrance, at certain points in the given
channel cross-section, the mean temperature of the liquid equals the

wall temperature at this point, which corresponds to the number
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Figure 3

Temperature Distribution Along the Perimeter of a Square
Channel for a Uniform Temperature Field at the Entrance,
and for a Given Heat Current Re=10", Pr=0.7, Kg=10, y= -1:
1-¢=0, 2-5, 3-10, 4-20.

Nu=+ «. Figure 4 presents the Nu number distribution along the sides of
a square in the channel cross-—-sections located at a different distance
from the entrance. It can be seen from an examination of this graph
that for £=5 there is one break in the Nu number distribution, which
corresponds to the point n=0.45; at a distance from the entrance of
£=10 the number Nu = + = at two points: n=0.65 and n=0.97.

At a given constant temperature of the wall, equation (4) must be

solved under the following boundary and inlet conditions:

-

< 0, §- by”: (1— :‘y.’c - Yy’t’) (I— px:—' Y:i’)- (ll) 428

Here 8 = (Tcr—T)/(Tcr—To).
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Figure 4

Nu Number Distribution Around the Perimeter of a Square

Channel for a Uniform Temperature Field at the Entrance

and for a Given Heat Current Re-10%, Pr=0.7, Ky=10, y= -1:
1-¢=5, 2-10, 3-20.

The solution of equation (4) under inlet and boundary conditions

(11) is the product of the solutions for the two following equations

6=0y0z:
M, &, v =-=10,-0
Gl)e 0_ —_()T!w B b 13 . (12)
® ! §=0, 0,=1—=3 71—y
I
lf 2y - R TY ’
aPe% (7_)1 . " . . (13)
g  dr § 0N ~1--fL—v

Utilizing the solution of equation (12), obtained for the number

Re»3-103 and E<100, we obtain
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Notation
x - longitudinal coordinate; y, z — transverse coordinates;
u — longitudinal velocity; v, w - transverse velocity compcnents;
U - velocity of the liquid at the entrance cross-section of the
channel; T - temperature of the liquid; a - temperature conductivity
coefficient; * - thermal conductivity coefficient; 2h, 2z; - height
and width of the rectangular channel; Re, Pe, Pr - Reynolds, Péclet,

and Prandtl numbers.
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